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Abstract. We show how to fix the renormalization scale for hard-scattering exclusive processes such as
deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scat-
tering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way,
we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illus-
trate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark
model for the parton-proton scattering amplitude that can incorporate Regge exchange contributions char-

acteristic of the deep inelastic structure functions.

PACS. 11.55.Fv; 11.10.Gh

1 BLM renormalization scale setting

A typical QCD amplitude for an exclusive process can be
calculated as a power series in the strong coupling constant

A=A 4 AW (1®) + AP 2 () + ... (1)

The renormalization scale p of the running coupling in
such processes can be set systematically in QCD without
ambiguity at each order in perturbation theory using the
Brodsky—-Lepage—Mackenzie (BLM) method [1-3].

The BLM scale is derived order-by-order by incor-
porating the non-conformal terms associated with the
B function into the argument of the running coupling.
This can be done systematically using the skeleton expan-
sion [4,5]. The scale determined by the BLM method is
consistent with (a) the transitivity and other properties
of the renormalization group [6], (b) the renormalization
group principle that relations between observables must
be independent of the choice of intermediate renormal-
ization scheme [7,8], and (c) the location of the analytic
cut structure of amplitudes at each flavor threshold. The
non-conformal terms involving the QCD [ function are
all absorbed by the scale choice. The coefficients of the
perturbative series remaining after BLM-scale-setting are
thus the same as those of a conformally invariant the-
ory with 8= 0. In practice, one can often simply use the
flavor dependence of the series to tag the non-conformal
[-dependence in perturbation theory; i.e., the BLM pro-
cedure resums the terms involving ny associated with the
running of the QCD coupling.
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Non-Abelian gauge theory based on SU(N¢) symmetry
becomes an Abelian QED-like theory in the limit No — 0,
while keeping a = Cras and ny = neg/2CF fixed [9]. Here
Cr = (NZ—1)/2N¢c. The BLM scale reduces properly to
the standard QED scale in this analytic limit. For example,
consider the vacuum polarization lepton-loop correction to
ete” = eTe™ in QED. The amplitude must be propor-
tional to a(s), since this gives the correct cut of the forward
amplitude at the lepton pair threshold s = 4m§. Thus the
renormalization scale u% = s is exact and unambiguous in
the conventional QED Goldberger—Low scheme [10]. If one
chooses any other scale u% # s, the scale u% = s will be
restored when one sums all bubble graphs. The BLM pro-
cedure is thus consistent with the Abelian limit and the
proper cut structure of amplitudes.

2 Difficulties in using the mean value theorem
to set the BLM scale

The BLM scale at leading order has a simple physical in-
terpretation: it is identical to the photon virtuality in QED
applications and the mean gluon virtuality in QCD when
one uses physical schemes that generalize the QED scheme,
such as the pinch scheme [2,11] and the avy [5,12] scheme
defined from the QCD static potential. The number of fla-
vors active in virtual corrections to a given process is evi-
dent from the BLM scale choice: the BLM method sets the
renormalization scale so that the flavor number is changed
properly in any renormalization scheme, including the MS
scheme (2, 13].

In effect, the BLM prescription identifies the renor-
malization scale and the gluon virtuality by eliminat-
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ing the dependence on the number of flavors from the
O(as) (expanding o itself) and O(a2) non-conformal
terms in the perturbative amplitude. Typically, a QCD
amplitude involves an integral over the momentum run-
ning through the gluon propagator. Therefore, the ar-
gument of the coupling, if taken to be the momentum
flowing through the gluon, varies through the integra-
tion phase space. A mean Q2 can be extracted from the
integral if the mean value theorem (MVT) of integral cal-
culus can be applied. The essential requirement for the
applicability of the MVT is that the function being eval-
uated at its mean value has to be continuous through
the interval and the weight function has to be Riemann-
integrable; this includes weight functions bounded and
continuous in the range of integration. However, these
necessary conditions are not a property of a principal
value integrand associated with a pole that appears, for
example, in Compton scattering and deeply virtual me-
son electroproduction (DVME); as we show explicitly
in Sect. 2.1 below, the MVT does not apply for these
amplitudes.

It was recently pointed out in [14] that the MVT pre-
scription for determining the BLM procedure fails for
amplitudes that are genuinely complex, that is, display
non-vanishing real and imaginary parts. The authors then
argue that there is no guarantee that the BLM prescription
will yield the same answer for both parts of the ampli-
tude. Worse, in the particular example that they study, p
and 7 electroproduction, the scale obtained from the real
part becomes discontinuous (zero to infinity) at a particu-
lar kinematical point due to a divergence in some of the
intermediate functions.

In this paper, we note that in a quantum field the-
ory, the real and imaginary parts of a scattering ampli-
tude are not independent, but are constrained due to
causality, locality, and Lorentz invariance. This mani-
fests itself in the form of the dispersion relations tradi-
tionally used in meson photoproduction [15,16] to link
both parts of the amplitude. By examining a simple ex-
ample in the next subsection, we show that the correct
prescription for finding the BLM renormalization scales
is to first fix the scale in the imaginary part, and then
subsequently, the real part can be obtained by means
of a dispersion relation. The BLM scales for the real
and imaginary parts are thus not generally equal. We
perform an explicit calculation for longitudinally polar-
ized vector meson electroproduction at non-zero skewness
in Sect. 2.2.

2.1 Example of the failure of the mean value theorem

To illustrate how the MVT can fail for an amplitude that
contains a pole, consider the following simple integral:

w=[ s@, " ©)

which is a functional of f and a function of y. The MVT
would state that there would exist a certain Z(y) in the in-
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terval (—1, 1) such that

1[f)(y) = F@(y)I1](y) .- 3)

For f = constant the theorem holds trivially. However,
now consider a linear function f(z) = Az + B, with A, B
arbitrary real constants. Substituting Cauchy’s principal
value for distributions (the imaginary part arising for y €

(_L 1))
1
r—y+ie

— PV [xiy]—imi(x—y), (4)

one easily finds

I[f](y) = 24+ (B + Ay) <log (1;2) —m> (5)
=24+ f(y)I[1](y) -

The MVT thus holds for the imaginary part, but it fails for
the real part by the term 2A. Even in the instance where f
could be chosen so that a certain Z would satisfy the theo-
rem for the real part, there would be no reason for Z to be
the same for the imaginary part.

In this example, the function I[f](y) is cut in the com-
plex y plane in the interval [—1,1] of the real axis. The
function satisfies an unsubtracted dispersion relation:

110 = 1, [ S0 0
Rerlfl) = [Pv] 1| avmmrine).

and thus the discontinuity across the cut is sufficient to re-
construct the whole function. In this trivial example the
discontinuity is

I[f](y+1i€e) = I[f](y —ie) = —2mif(y) (7)

and the mean value “scale” for the imaginary part is Z(y) =
y. Once this Z has been chosen, the full amplitude is easily
reconstructed from the dispersion relation.

This procedure is not restricted to linear functions. For
an arbitrary polynomial one can expand around vy,

N f£(n)
o=+ Ve-y @
n=1 ’

We have now

Ifly) = —(=1-y)").

9)

Again, the second term is “unexpected” and a naive appli-
cation of the mean value theorem to the real part fails. This
additional term is a sum of binomials of increasing degree,
which in the limit N — co can be used to construct any
entire function. Since it is analytic, it provides no contribu-
tion to the discontinuity across the cut, and the dispersion
relation in (6) still holds.

F™(y
+Z . n, —y)"
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2.2 Meson electroproduction

We now turn to the problem of determining the renor-
malization scale for vector meson electroproduction v*p —
VOp', the critical example studied in [14]. We will em-
ploy the same kinematics, frame choice, and conventions as
in [17]. It will be useful to note here that in the asymmet-
ric frame employed, the skewness variable plays the role of
Bjorken’s x, and

Q? . N2 2
= Q245 M2 QR =s+t+u—2Mjy.

The skewness is in the interval

—t AM?
(e lo, o012 <\/1+ (—1) —1)] .

As a specific example of meson electroproduction, we
consider the production of a p° meson by a longitudinally
polarized virtual photon 77 with large virtuality Q2 =
—q? [18,19]. The relation of the differential cross section to
the generalized parton distributions is well-known [20]

¢ (10)

(11)

doy, 1 1 L2
_ M
dt 1671'(3—M]2V)/11/2(37—Q27M12v) 2 §;| I
(12)
where A1/2 is Killen’s function,
AY2(a,b,c) = /a2 + b2+ 2 —2(ab+ac+be),  (13)

and the amplitude to leading order in a5 and @, ignoring
the F generalized parton distribution (GPD), is

. 41 -
1MPL0 =—leg o dmas(u?)UA(P)y T Uy (P)

1 1 1 »
7 H
<[ o) [ def @ e

" 1 n 1

r—C(—ie zx+ie|
We use a model for the GPD H in this expression speci-
fied below in Sect. 3. Much useful information on GPD’s
has been collected in [21]. Notice that at large s one should
also take into account the double gluon exchange between
the nucleon and the photon projectile (exiting the reaction
as a meson). Substituting now

(14)

V1=¢
1-¢/2
and employing the asymptotic value for the vector meson
distribution amplitude [22]

UN(P)y Ux (P') =2P" 8y (15)

D,(2)=62(1-2)f, (16)
with f, = 0.216 GeV, we obtain
L_—e\/l—{43fp 9 9 1
Im Mpo = 1_4/2 9 9 471' aS(MBLM)ékx\’Q
x [HE (0.6, - HE (¢.¢.) (17)
L L
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Once the BLM scale is fixed, as in (22) below, the real
part of the amplitude to leading order can be accessed by
a dispersion relation

1 [ 1
Re M = / Im MpLOPV[ ) ] ds’. (18)
T J(Mp+mp)2 s'—s

A few remarks are in order: the é factor in (17) makes
the dispersion integral in (18) convergent at fixed ¢ (the
Bjorken limit). This is the kinematical case traditionally
considered in meson electroproduction [20]. Further, the
threshold for the integral is irrelevant if one considers the
large @ behavior of ML . The use of a dispersion relation
at fixed positive skewness ¢ induces a left cut in the com-
plex s plane due to the photon becoming time-like there.
This and the usual t-channel left cut are consistently neg-
lected in (18) as they are 1/s (1/Q? at fixed () suppressed.
Finally and most importantly, the 1/Q factor in (18) rela-
tive to the corresponding Compton amplitude makes the
Compton cross section fall much slower in @ than its me-
son electroproduction counterpart. This is due to the extra
gluon necessary to construct the LO distribution ampli-
tude of the emitted meson and is a striking manifestation
of the J = 0 fixed pole that appears in the Compton ampli-
tude due to the quasi-local coupling of two currents to the
propagating quark [23].

Let us now turn to setting the BLM renormalization
scale for meson electroproduction. We shall disregard the
w evolution of H as an irrelevant complication for our ap-
plication. Since the leading order is oy, and the NLO am-
plitude is available, we can follow [14]. One identifies the
NLO contributions from the vacuum polarization (which
can be picked up from its dependence on Ny) and imposes
the BLM scale-fixing condition on the imaginary part of
the amplitude

1 1
dz P
Im/0 dz®,(2) /4—1 1_</2Hp%(m,§,t)T—0,

with the MS expression

z(xl—ie) E ~log (?) o (gﬂ

_|_(liz)x_é_HGB_log((l—z)g(x—@>

(8]

Following [24], we first notice that the z integrals are trivial
when employing the meson distribution amplitude in (16),

1
1
/ az,(z) 8% = -
0 Z

(19)

T =

(20)

2 )
1
log(1—z) 9fp
dzo =—
| a0 =

1 1
/ dz®,(z) =3f,,
0 z

! 1
/0 dzépp(z)l_z =3f,, (21)
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which allows us to find simpler expressions than those
in [14]. Solving for x? yields the BLM scale

MQ — QQe—Al/AQ (22)
in the MS scheme, where
A2 =7 [H(Ov C, t) - H(C, Cv t)]
A= (g +108¢) da - (~H(C.C ) log(1 - Q)
0
+ dxH(x7Cat)_H<0aC7t)
¢-1 r
! H(x7gat)_H(<aC7t)
_ /C dz o > . (23)

We also note that if (17) is N-independent, then (18) is
also N¢-independent, and the goal of the BLM scale fix-
ing procedure is achieved simultaneously for the real and
imaginary parts of the amplitude thanks to the dispersion
relation.

We thus have a totally consistent scale setting proced-
ure at the level of the amplitude. Choosing to fix the BLM
scale at the level of the total cross section is, therefore,
an unnecessary complication. The reader may observe that
since both A; and A are linear in H, the scale in (22) is in-
dependent of the absolute normalization of H. This would
change if the F or other GPD’s were included in the analy-
sis. The same observation applies to the normalization of
the p meson distribution amplitude; i.e., x is independent
of f, in our approximation. Thus the BLM renormalization
scales are effectively independent of the flavor of the meson
produced.

3 Covariant quark-diquark model for the H
generalized parton distribution

To complete the evaluation of this specific example, we
need a physically inspired model for H. We recall the an-
alytic model for virtual Compton scattering introduced
in [25], which is the gauge invariant leading twist exten-
sion of the “covariant parton model” for structure func-
tions given in [26]. This model can also incorporate not
only Reggeon exchange in the ¢ channel, but also the ¢2-
independent and ¢-independent J = 0 fixed-pole contribu-
tion from the local coupling of the two photons to the
struck quark. The J = ag = 1/2 Regge contributions to the
structure functions are evidenced by the y/x behavior of
the non-singlet structure function F}(z,Q?)— F2(z, Q?)
at small . Since this model has not been widely used in the
past few years, we find it worthwhile to readdress it in the
modern context as a contribution to the current discussion
on GPD'’s.

The central ansatz of the covariant parton model [26]
is to construct a model of the quark-parton scattering am-
plitude, a vertex with two quark legs of momentum k, &’
and spin indices ,i’ and two proton legs with momentum
p, p’ and helicities A, . Since the parton legs are not on-
shell, this amplitude is a function of four different Lorentz

S.J. Brodsky, F.J. Llanes-Estrada: Renormalization scale-fixing for complex scattering amplitudes

scalars that can be chosen as the three Mandelstam invari-
ants sp, = (p+ k)%, tpp = (K —k)* = (0 —p)?, upp = (p—
k)? and k2. The squared momentum of the returning par-
ton can be expressed as k'> = Spp +tpp + Upp — 2M % — K2
We will denote this amplitude by

Twsiri [8pp» tops Upp k2] . (24)

In terms of the DVME scattering kinematical variables z,
A, ¢, t, and the integration variable k, we have the fol-
lowing expressions for the parton-proton scattering matrix
Lorentz invariants:

M2+ A2
spp=(L+z—()P* (k:+(1_—2)Pi

Upp = (P+k_ _MJQV)(x_ 1) _ki

typ =1

E*=zP k™ —k2
E2=t+ME(1—2)+ Pk (z—()+ (M2 +A2)

x(1+1f¢)—<kL—Au2

> — (ki —A)?

(25)

(hereafter the subindex ,, can be dropped without confu-
sion). To connect with the modern formulation of deeply
virtual Compton scattering in terms of GPD’s, let us
note [21] that

L 0@y [H@ ot - B, 2 o)

2P+ Y y 6 U)Y IAY) IMn A
dy~ izPTy~ 7

:/ 8yﬂ- e PTy /Q(P’,>\’|W(0)’y+W(y)IP,)\)|y+:0,yL:o

4 g ,
:;/(gﬂifs(gﬂptm)/ ((;71_];45((m—§)P+—k+)

X 7:/ (27T)45(4) (p + K — p/ + k)T)\/\/;i/i [S, t,u, k2] ’ (26)
where the Fourier modes of the fermion field are
(k) = / d*y e (y)6® (y 1 )o(y ™). (27)

This allows one to construct the leading twist handbag
contributions to the GPD’s given a model for the parton-
proton scattering amplitude, by integrating over parton
transverse and (—) momentum, and contracting the spins
with a 4T matrix in the parton Dirac space.

The simplest model for the parton-proton amplitude
is a tree-level diagram based on perturbation theory with
a proton-quark-diquark vertex (see Fig. 1). Since we are
only interested in leading twist effects in the electroproduc-
tion amplitude, we will ignore the axial vector diquark and
the spin dependence of the vertex. The proton spin in this
model, with an s-wave proton-quark-diquark vertex, is car-
ried by the struck quark, so that

T)\A/;i/i[s,t,u,kz] :T[s,t,u,kz]é,\yéii/ (28)
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a

Fig. 1. a Quark-proton scattering matrix. b Quark-proton u-
channel diquark exchange. ¢ Quark-proton ¢-channel pomeron/
Reggeon exchange. The need for modeling Regge trajectories
is avoided by requiring ¢ < —1 GeV?, where a(t) — —1[27] and
u®®) o i, which can be reabsorbed in the quark-diquark model

for the H GPD part, which yields the oversimplified, yet
practical equation

1 1 [ d%%
2P+H(x,§,t):2/(27T)45(P+x—k*)T[s,t,u,kz].
(29)

The amplitude in covariant perturbation theory is

(ig(k?)).
(30)

T(s. 40, k2, k2) = (ig(k? '
1 (S, , U, ’ ) (lg( ))<p—k)2—)\2+i€

Here A plays the role of a scalar diquark mass and g is the
amplitude for the proton-quark-diquark coupling. The sta-
bility condition dictates that the sum of the diquark and
parton masses has to be larger than the proton mass to
prevent the decay to a free quark and diquark pair. This
feature is not apparent from Dyson—Schwinger models of
the proton-quark-diquark vertex [28—30], where the di-
quark mass is of the order 800 MeV and decreases simul-
taneously with the quark mass at large momentum, but the
Euclidean space formulation does not accommodate the
decay. Except for this point, the work of these authors can
perfectly be reused here as model input.

The vertex functions g(k?) are known from these funda-
mental studies to fall with k2. One could guess that

2 )
9(k7) = (k2 — A2) +ie (31)
for some A constituent or running quark mass (that we will
take fixed here at 0.5 GeV, with g =55 and A = 1.6 GeV).
This is simply suggested by the observation that T is not
a truncated amplitude at the quark legs, and therefore
it includes their propagators. However, since all the re-
coil t-dependence in the form factor calculation needs to
be present in the vertex g(k/z) and we know by the QCD
counting rules that at large momentum transfer Fj(t) o
t~2, the simplest workable model is

2 )
g(k*) = I 32
) ((k2 — A2) +i€)® (32
This can be viewed as a derivative with respect to A of (31);
since it can be pulled out of the k integration as a paramet-
ric derivative, it does not alter the analytical structure of
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f( @3
x<0

Fig. 2. Integration over the K~ =k~ P variable in the com-
plex plane for the diquark model. From the figure, H(z < 0) =0

(DJ©)
\‘llil" 00}
C<x

0<x<{

the DVME amplitude nor the placement of poles of T in
the £~ plane that we are now studying.

Consider, therefore, the model defined by (30) and (32).
We employ the variable k= = PTk~ so that an inverse
power of PT comes out of the k™~ integral and yields

H(z,(,t) = /0

in place of (29) and with k™, k' fixed as above. The parton-
proton amplitude is at this order an holomorphic function
of k= and has three poles, whose positions are depicted
in Fig. 2. The diquark propagator yields a simple pole de-
noted as (1) and given by the condition u — A% +ie = 0. The
vertex functions yield two double poles, denoted by (2) for
k2 — A2 +ie=0 and (3) for k2 — A% 4ie = 0 respectively.
These poles are respectively located at

ko |dfky|

27 [ee]
d dr"T[s, t,u, k>

(33)

N HK M1 -x)

ie,

K1

1—x
_ A?+K2 +ie
Ky =
x
A% 42 +ie
2 = 34
K/3 1’—( ’ ( )
where we have grouped
&= -+ a0 - o)+ (0t + A2
z 2
X 1+1—C —(kL—AL) . (35)

The k~ integral can now be immediately performed pick-
ing up the residue of the simple or double pole as in Fig. 3.

We find
H(w e 0.0.6.0 =4 5 57 [ lkfali
o 1 1 z—1 2z—0)
X A d(z)L (U_>\2 (klg_/l2)2> <U—)\2 klz—/l2>

(36)

evaluated at the pole k= = k5. The second term, being
proportional to x — (, does not give a contribution to the
imaginary part of the electroproduction amplitude at lead-
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Fig. 3. Two light-cone time-ordered diagrams for the handbag
diagram with a covariant parton-proton scattering vertex based
on a parton-diquark-proton vertex and second order perturba-
tion theory. Notice that the second diagram, present in a covari-
ant model, gives rise to a non-vanishing H(z € (0, ), (,t) and
to a well-defined imaginary part, by providing a finite part from
the left needed for continuity at x = ¢

ing Q2. We also have

1-¢/2 [>

Hwe @00 =g 47 [T kja,
27Td 1 1

<Jo oo (o L e )

(37)

which gives a positive definite H function.

4 Numerical results

We now provide a numerical computation of the above
model in order to illustrate the approach. The t-dependence
of the H GPD in this quark-diquark model is plotted in
Fig. 4. As can be seen, H falls rapidly with ¢ at fixed (.
The region ( —1 < x < 0 cannot be accessed with this “va-
lence” model. However, the fact that the vertex employed
is covariant gives a feature absent in the constituent va-
lence light-front quark model, that is, a non-vanishing

H GPD in diquark model
Fixed {=0.12

3 \ ‘ \ \

a4
— t=0.5GeV

- = =1GeV’ |
© =2GeV i

l l
0.6 0.8 1

Fig. 4. The t-dependence of the H(x,(,t) generalized par-
ton distribution in the perturbative diquark model at fixed
¢ =0.12. Since this model does not have a sea wavefunction
component, it does not give access to the region ( —1 < x < 0.
However, it is sufficient for the purpose of illustrating BLM
scale fixing via a dispersion relation
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H(z=¢,(,t) and continuity at = . This allows for an
imaginary part in the electroproduction amplitude in this
minimal model. In Fig. 5, we plot the (-dependence of H.
The sharpness of the peak in this graph is controlled by A,
the diquark mass. The diquark model satisfies the simpli-

fying property

H(z<0,(,t)=0. (38)
We can then reproduce the result of Belitsky and Muller for
the BLM scale for the imaginary part of the amplitude; in
our asymmetric frame (23) their result is

H(z,(t)
A1 ! -1
1 9Jrlog ¢ _/ da HG6D

In Fig. 6, we display the resulting BLM scale as extracted
from the imaginary part of the amplitude. It can be seen
that pd;\; < Q?, indicating that meson electroproduction
at practically accessible kinematics measures the coupling
constant a in the infrared regime where theoretical con-
siderations [31] lead us to expect a fixed point. For numeri-
cal purposes one can use

(39)

N 47
()= (9log((u2 + M)/ 42)) "

with A ~0.2-0.21 GeV and My~ 1-1.1 GeV at the BLM
scale in the MS scheme. With this, (17) and (18) can be
immediately evaluated. This legacy form of the running
coupling has been successfully applied to the prediction
of electromagnetic form factors and other quantities (see
overview in [32]). Since the BLM scale that we determine
is small, our calculations sample mostly a;(0). The value
of this fundamental quantity, controlled in (40) by the

(40)

H GPD in diquark model
Fixed t=-2GeV’
0.7 i
| — =025 i
061~ S - = =012 m
Foo cees £=0.06 R

0 0.2 0.4
X

Fig. 5. (-dependence of the H(z,(,t) generalized parton
distribution in the perturbative diquark model at fixed ¢t =
—2GeV2. Observe that by performing different pole integrals
for x > ¢ and z < ¢, obtaining continuity at = = is a non-
trivial test of the model and computations
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BLM scale in Meson Electroproduction
Fixed by imaginary part

0 T T T T T T T T T T T T T
I ® Toul |
-l —— contribution of integral over H =
2 | ® ]
= _._f -
N °
3 ]
Qor %,
=1 o
00 4+ [ |
S ®eo
L ... i
L)
5k LY —
[ ]
%
L L 1Y ]
%
e
-6 ...
L o P
[ ]
7 L 1 L 1 L 1 L 1 L 1 L 1 L 3
0 0.1 0.2 0.3 0.4 0.5 0.6

¢

Fig. 6. BLM scale in p% meson electroproduction at Q2 =
4GeV? and t = —2 GéV2. The solid line represents the contri-
bution of the integral in (39)

parameter My, is uncertain. With our parameterization,
as(0)~0.9.

As a final illustration, we give the model’s prediction
for the differential cross section in (12). The result of the
computation is plotted in Fig. 7. Since the perturbative di-
quark model is only viable at sizeable t, we fix t = —2 GeV2.
Consequently, the cross section is much smaller than re-
ported by other authors at t = tyinimum- Lhe fall-off as
a power law at fixed skewness is built into our formal-
ism can be traced to (14) and (12). Notice that the DVCS
Cross secti()Qn is enhanced at high momentum transfer by
Q
3
over pY production in spite of the extra agn suppres-
sion in Compton scattering [23]. For this example, we
have chosen kinematics such that Q2/t is 2 or more as
a compromise between theory and experimental uncer-
tainties. From the theoretical point of view, one would
like to control the factorization corrections increasing this
ratio. However a much larger Q? would be difficult for
an experiment at an upgraded Jefferson lab or, due to
statistical limitations at sizeable ¢, at larger s machines.
Note that the largest uncertainty in our work is likely
to come from modeling the GPD H. The DVME Q¢
fall-off is a genuine QCD prediction [18] and is consis-
tent with the experimental result of HERMES [33] at
v/s =5.4 GeV, which yields an exponent —5.66(36), within
one standard deviation. One should notice the subtlety
that the HERMES data is quoted at fixed center of mass
energy squared W2 = s for the photon-nucleon system,
whereas the predicted fall-off is at fixed scaling variable,
here the skewness (. However, since [33] also displays
a very weak W-dependence, one can slide s in the HER-
MES data and use our (10) to obtain the same expo-
nent at fixed skewness. The cross sections reported by
this experiment, which are dominated by low t Regge
processes, cannot be directly compared with our result.

a factor and eventually crosses over and dominates
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Fig. 7. As an illustration we present the model computation

for p% meson electroproduction at ¢t = —2 GeV? and ¢=0.3.
The fall-off with Q° at fixed ¢ follows from (14) and (12)

We look forward to future measurements with a larger
—t reach.

5 Conclusion

We have shown that there is no a priori difficulty to set
the renormalization scales that appear in hard hadronic
scattering amplitudes that are genuinely complex. The in-
dividual BLM scales for the real and imaginary parts are
unambiguous and distinct, and they maintain the analyt-
icity and dispersion relations of the full scattering ampli-
tude. Just as in Abelian theory, the BLM method in QCD
fixes the arguments of the running coupling to maintain
the correct cut structure of the quark loop vacuum po-
larization contribution at each flavor threshold. All the
non-conformal contributions to the amplitude associated
with the running of the gauge coupling are used to set
the renormalization scales. The remaining perturbation se-
ries is then identical with a conformal theory with zero
(3 function.

We have determined the BLM renormalization scales
for the imaginary and real parts of the v*p — p? p’ me-
son electroproduction amplitude, a process of current the-
oretical and experimental interest. We applied the BLM
prescription to the imaginary part and employ a fixed-t dis-
persion relation to calculate the scale-fixed real part. We
have exploited the connection between generalized parton
distributions and the parton-proton scattering amplitude
in order to obtain an analytic representation of the helicity-
conserving amplitude H in terms of a simple, yet physically
inspired, quark-diquark model of the proton.

It has been conventional to characterize the precision
of pQCD predictions by using an arbitrary renormalization
scale in the MS scheme, such as p% = Q?, and then varying
the scale over an arbitrary range, e.g., Q?/2 < u% < 2 Q?
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as a means to estimate the convergence of the perturba-
tive series. However, the variation of the renormalization
scale can only be relevant for the non-conformal contribu-
tions to an observable, not the complete series. In fact, as
we have stressed, there is actually no renormalization scale
ambiguity since one must set the argument of the running
coupling such that amplitudes have the correct analytic
cut structure at each quark threshold. This is done cor-
rectly in any renormalization scheme by using the BLM
method.
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